
Tree-Based Methods

Szu-Chi Chung

Department of Applied Mathematics, National Sun Yat-sen University

Tree-based Methods

 Here we describe tree-based methods for regression and classification

 Firstly stratifying or segmenting the predictor space into a number of simple regions

 Use the mean or the mode response value for the training observations in the region to

which it belongs for inference

 Since the set of splitting rules used to segment the predictor space can be

summarized in a tree, these types of approaches are known as decision-tree

methods

2

Pros and Cons

 Tree-based methods are simple and useful for interpretation

x However, they typically are not competitive with the best supervised learning

approaches in terms of prediction accuracy

 Hence we also discuss

 bagging

 random forests

 boosting

 These methods grow multiple trees which are then combined to yield a single

consensus prediction

 Combining a large number of trees can often result in dramatic improvements in prediction

accuracy, at the expense of some loss interpretation

3

Baseball salary data: how would you stratify it?

 We first remove missing data and log-transform Salary in the Hitters dataset

 Salary is color-coded from low (blue, green) to high (yellow, red)

4

https://islp.readthedocs.io/en/latest/datasets/Hitters.html

A taste of decision tree

 Overall, the tree stratifies or segments the players into three regions of

predictor space:

 𝑅1 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 < 4.5 }

 𝑅2 = { 𝑋 | 𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 < 117.5 }

 𝑅3 = 𝑋 𝑌𝑒𝑎𝑟𝑠 ≥ 4.5, 𝐻𝑖𝑡𝑠 ≥ 117.5 }

5

Decision tree for these data

6

Details of previous figure

 For the Hitters data, a regression tree for predicting the log salary of a

baseball player, based on the number of years that he has played in the major

leagues and the number of hits that he made in the previous year

 At a given internal node, the label (of the form 𝑋𝑗 < 𝑡𝑘) indicates the left-hand branch

emanating from that split, and the right-hand branch corresponds to 𝑋𝑗 ≥ 𝑡𝑘. For instance,

the split at the top of the tree results in two large branches. The left-hand branch

corresponds to Years< 4.5, and the right-hand branch corresponds to Years ≥ 4.5

 The tree has two internal nodes and three terminal nodes, or leaves. The number in each

leaf is the mean of the response for the observations that fall there

7

Details of previous figure

 In keeping with the tree analogy, the regions 𝑅1, 𝑅2, and 𝑅3 are also known as

terminal nodes

 Decision trees are typically drawn upside down, in the sense that the leaves are at the

bottom of the tree

 The points along the tree where the predictor space is split are referred to as internal nodes

 In the hitters tree, the two internal nodes are indicated by the text 𝑌𝑒𝑎𝑟𝑠 < 4.5 and 𝐻𝑖𝑡𝑠 <
117.5

8

Interpretation

1. Years is the most important factor in determining Salary, and players with

less experience earn lower salaries than more experienced players

2. Given that a player is less experienced, the number of Hits that he made in

the previous year seems to play little role in his Salary

3. But among players who have been in the major leagues for five or more years,

the number of Hits made in the previous year does affect Salary, and

players who made more Hits last year tend to have higher salaries

 Surely an over-simplification, but compared to a regression model, it is easy to

display, interpret and explain

9

Details of the tree-building process

1. We divide the predictor space — that is, the set of possible values for

𝑋1, 𝑋2, … , 𝑋𝑝— into 𝐽 distinct and non-overlapping regions, 𝑅1, 𝑅2, … , 𝑅𝐽

2. For every observation that falls into the region 𝑅𝑗 , we make the same

prediction, which is simply the mean of the response values for the training

observations in 𝑅𝑗

10

 How do we construct the regions

𝑅1, 𝑅2, … , 𝑅𝐽?

 In theory, the regions could have any shape!

 However, we choose to divide the predictor

space into high-dimensional rectangles, or

boxes, for simplicity and for ease of

interpretation of the resulting predictive model

Details of the tree-building process – Step 1

 The goal is to find boxes 𝑅1, 𝑅2, … , 𝑅𝐽 that minimize the RSS, given by

𝑗=1

𝐽

𝑖∈𝑅𝑗

(𝑦𝑖 − ො𝑦𝑅𝑗)
2

ො𝑦𝑅𝑗 is the mean response for the training observations within the 𝑗th box

 Unfortunately, it is still computationally infeasible to consider every possible

partition of the feature space into 𝐽 boxes

1. We take a top-down, greedy approach that is known as recursive binary splitting

2. The approach is top-down because it begins at the top of the tree and then successively

splits the predictor space

3. It is greedy because, at each step, the best split is made at that particular step, rather than

looking ahead and picking a split that will lead to a better tree in some future step

11

Details of the tree-building process – Step 1

 We first select the predictor 𝑋𝑗 and the cutpoint 𝑠 such that splitting the

predictor space into the regions {𝑋|𝑋𝑗 < 𝑠 } and {𝑋|𝑋𝑗 ≥ 𝑠 } leads to the

greatest possible reduction in RSS (choosing 𝑗 and 𝑠 to minimize)

𝑖:𝑥𝑖𝜖𝑅1(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅1)
2+

𝑖:𝑥𝑖𝜖𝑅2(𝑗,𝑠)

(𝑦𝑖 − ො𝑦𝑅2)
2

 Next, we look for the best predictor and best cutpoint in order to split the data

further so as to minimize the RSS within each of the resulting regions

 Instead of splitting the entire predictor space, we split one of the two previously identified

regions. We now have three regions

 Again, we look to split one of these three regions further, so as to minimize the RSS

 The process continues until a stopping criterion is reached; for instance, we may continue

until no region contains more than five observations

12

Details of the tree-building process – Step 1

 If the predictor is quantitative, this means considering all possible thresholds

for splitting

 The threshold value is drawn from the sorted observation

 If the predictor is categorical, this means considering all ways to split the

categories into two groups

 We may rank the categories according to the average value of the target variable for

observations in each category (label encoding) and split them like quantitative variables

 If the target is qualitative, we may use this strategy (All combinations or one versus rest)

13

https://dafriedman97.github.io/mlbook/content/c5/s1/regression_tree.html
https://stackoverflow.com/questions/45513511/decision-trees-choosing-thresholds-to-split-objects
https://dafriedman97.github.io/mlbook/content/c5/s1/classification_tree.html#making-splits

Predictions

 A five-region example of

this approach is shown

 We predict the response for

a given test observation

using the mean of the

training observations in the

region to which that test

observation belongs

14

Regularization

 The process described above may produce good predictions on the training set,

but is likely to overfit the data, leading to poor test set performance

 A smaller tree with fewer splits (that is, fewer regions 𝑅1, 𝑅2, … , 𝑅𝐽) might lead

to lower variance and better interpretation at the cost of a little bias

 A simple way to limit a tree’s size is to directly regulate its depth, the size of its terminal

nodes (training data belongs to them), or both

 One possible alternative to the process described above is to grow the tree only so long as

the decrease in the RSS due to each split exceeds some threshold

 These strategy will result in smaller trees, but is too short-sighted: a seemingly worthless

split early on in the tree might be followed by a very good split — that is, a split that leads

to a large reduction in RSS later on

15

Pruning a tree

 A better strategy is to grow a very large tree 𝑇0, and then prune it back in order

to obtain a subtree

 Again, considering all possible subtrees is not practical! Cost complexity pruning — also

known as weakest link pruning — is used to do this

 We consider a sequence of trees indexed by a nonnegative tuning parameter 𝛼. For each

value of 𝛼, there corresponds a subtree 𝑇 ⊂ 𝑇0 such that

𝑚=1

|𝑇|

𝑖:𝑥𝑖∈𝑅𝑚

(𝑦𝑖 − ො𝑦𝑅𝑚)
2 + 𝛼|𝑇|

is as small as possible

 Here |𝑇| indicates the number of terminal nodes of the tree 𝑇, 𝑅𝑚 is the rectangle (i.e. the

subset of predictor space) corresponding to the 𝑚th terminal node, and ො𝑦𝑅𝑚 is the mean of

the training observations in 𝑅𝑚

16

Choosing the best subtree

 The tuning parameter 𝛼 controls a trade-off between the subtree’s complexity

and its fit to the training data

 Note that a similar formulation was used in order to control the complexity of a

linear model when we discuss lasso!

 It turns out that as we increase 𝛼 from zero, branches get pruned from the tree

in a nested and predictable fashion!

 We select an optimal value ො𝛼 using cross-validation

 We then return to the full data set and obtain the subtree corresponding to ො𝛼

17

https://stats.stackexchange.com/questions/193538/how-to-choose-alpha-in-cost-complexity-pruning

18

Baseball example revisit

1. First, we randomly divided the data set in half, yielding 132 observations in

the training set and 131 observations in the test set

2. We then built a large regression tree on the training data and varied 𝛼 in order

to create subtrees with different numbers of terminal nodes

3. Finally, we performed six-fold cross-validation in order to estimate the cross-

validated MSE of the trees as a function of 𝛼

19

Baseball example revisit

20

Baseball example continued

21

Classification Trees

 Very similar to a regression tree, except that it is used to predict a qualitative

response rather than a quantitative one

 For a classification tree, we predict that each observation belongs to the most commonly

occurring class of training observations in the region to which it belongs

 The proportions among the training observations that fall into that region also matter!

 We also use recursive binary splitting to grow a classification tree

 In the classification setting, RSS cannot be used as a criterion for making the binary splits

22

https://dafriedman97.github.io/mlbook/content/c5/s1/classification_tree.html

Details of classification trees

 A natural alternative to RSS is the classification error rate

 This is simply the fraction of the training observations in that region that do not belong to

the most common class

𝐸 =
1

𝑁𝑚

𝑖∈𝑅𝑚

𝐼(𝑦𝑖 ≠ ො𝑦𝑖) = 1 − max
𝑘

Ƹ𝑝𝑚𝑘

Where ො𝑦𝑖 = 𝑎𝑟𝑔max
𝑘

Ƹ𝑝𝑚𝑘 and Ƹ𝑝𝑚𝑘 represents the proportion of training observations in the

𝑚th region that are from the 𝑘th class

 However classification error is not sufficiently sensitive for tree-growing, and

in practice two other measures are preferable

23

Gini index and cross-entropy

 The Gini index for a specific node is defined by

𝐺 = 1 −

𝑖=1

𝐾

Ƹ𝑝𝑚𝑘
2 =

𝑖=1

𝐾

Ƹ𝑝𝑚𝑘(1 − Ƹ𝑝𝑚𝑘)

 The Gini index takes on a small value if all of the Ƹ𝑝𝑚𝑘’s are close to zero or one

 For this reason, the Gini index is referred to as a measure of node purity — a small value

indicates that a node contains predominantly observations from a single class

 An alternative to the Gini index is cross-entropy, given by

𝐷 = −

𝑘=1

𝐾

Ƹ𝑝𝑚𝑘 log Ƹ𝑝𝑚𝑘

 It turns out that the Gini index and the cross-entropy are very similar

numerically and both differentiable

24

Gini index and cross-entropy

 In order to evaluate the purity of a split (rather than that of a node), we use the

weighted Gini index or weighted cross-entropy

 Consider a split of node which creates children 𝑅𝑚
𝐿 and 𝑅𝑚

𝑅

 Let the fraction of training observations going to 𝑅𝑚
𝐿 be 𝑁𝐿 and the fraction going to 𝑅𝑚

𝑅 be

𝑁𝑅. The weighted loss (whether with the Gini index or the cross-entropy) is defined as

𝐿 = 𝑁𝐿𝐺 𝑅𝑚
𝐿 +𝑁𝑅𝐺(𝑅𝑚

𝑅)

or

𝐿 = 𝑁𝐿𝐷 𝑅𝑚
𝐿 +𝑁𝑅𝐷(𝑅𝑚

𝑅)

25

Example: Heart data

 These data contain a binary outcome HD for 303 patients who presented with

chest pain

 An outcome value of Yes indicates the presence of heart disease based on an

angiographic test, while No means no heart disease. There are 13 predictors

including Age, Sex, Chol (a cholesterol measurement), and other heart and lung

function measurements

 Cross-validation yields a tree with six terminal nodes. See next figure

26

https://github.com/JWarmenhoven/ISLR-python/blob/master/Notebooks/Data/Heart.csv

 There are some qualitative predictors

 Some of the splits yield two terminal nodes

that have the same predicted value

 Though the split 𝑅𝑒𝑠𝑡𝐸𝐶𝐺 < 1 does not reduce the

classification error, it improves the Gini index and

the entropy, which are more sensitive to node purity

(weighted by the observation in each subtree)

27

https://dafriedman97.github.io/mlbook/content/c5/s1/regression_tree.html#making-splits

Trees Versus Linear Models

 Regression tree assume a model

of a form

𝑓 𝑋 =

𝑚=1

𝑀

𝑐𝑚1(𝑋∈𝑅𝑚)

 Top Row: True linear boundary;

Bottom row: true non-linear

boundary

 Left column: linear model;

Right column: tree-based

model

28

Advantages and Disadvantages of Trees

 Pros

 Trees are very easy to explain to people. In fact, they are even easier to explain than linear

regression!

 Some people believe that decision trees more closely mirror human decision-making than

do the regression and classification approaches seen in previous chapters

 Trees can be displayed graphically, and are easily interpreted even by a non-expert

(especially if they are small)

 Trees can easily handle qualitative predictors without the need to create dummy variables

 Cons

x Unfortunately, trees generally do not have the same level of predictive accuracy as some of

the other regression and classification approaches seen in this book

 However, by aggregating many decision trees, the predictive performance of

trees can be substantially improved. We introduce these concepts next
29

https://catboost.ai/en/docs/concepts/algorithm-main-stages_cat-to-numberic

Why and when to use ensemble learning?

 Suppose you pose a complex question to thousands of random people and then

aggregate their answers. In many cases, you will find aggregated answer is

better than an expert’s answer. This is called the wisdom of the crowd

 If you aggregate the predictions of a group of predictors (such as classifiers or regressors),

you will often get better predictions than with the best individual predictor

 A group of predictors is called an ensemble; thus, this technique is called Ensemble

Learning, and an Ensemble Learning algorithm is called an Ensemble method

 You will often use Ensemble methods near the end of a project, once you have already built a few

good predictors, to combine them into an even better predictor

 In fact, the winning solutions in Machine Learning competitions often involve several

Ensemble methods

30

Simple example - Voting classifier

 Suppose you train a few classifiers, each one achieving about 80% accuracy

 A very simple way to create an even better classifier is to aggregate the predictions of each

classifier and predict the class that gets the most votes. This majority-vote classifier is

called a hard voting classifier

31

 If you build an ensemble containing 1,000

classifiers that are weak learners and individually

correct only 51% of the time. If you predict the

majority voted class, you can hope for up to 75%

accuracy!

 Only true if all classifiers are perfectly independent

and make uncorrelated errors!

 One way to get diverse classifiers is to train them

using very different algorithms

https://math.stackexchange.com/questions/4363939/how-did-you-get-75-and-97-with-which-formula

Ensemble method - Bagging

 Another approach is to use the same training algorithm for every predictor but

train them on a different dataset

 Recall that given a set of 𝑛 independent observations 𝑍1, … , 𝑍𝑛, each with

variance 𝜎2, the variance of the mean ҧ𝑍 of the observations is given by 𝜎2/𝑛

 In other words, averaging a set of observations reduces variance. Of course,

this is not practical because we generally do not have access to multiple

training sets

 Bootstrap aggregation, or bagging, is a general-purpose procedure for reducing the

variance of a statistical learning method

32

https://dafriedman97.github.io/mlbook/content/c6/s1/bagging.html
https://online.stat.psu.edu/stat414/lesson/24/24.4

Bagging— continued

 We can bootstrap, by taking repeated samples from the (single) training data

set

33

 In this approach, we generate 𝐵 different

bootstrapped training data sets

 We then train our method on the 𝑏th

bootstrapped training set in order to get
መ𝑓∗𝑏(𝑥), the prediction at a point 𝑥. We then

average all the predictions to obtain

መ𝑓𝑏𝑎𝑔 𝑥 =
1

𝐵

𝑏=1

𝐵

መ𝑓∗𝑏 𝑥

Bagging classification trees

 The above prescription applied to regression trees

 These trees are grown deep, and are not pruned. Hence each individual tree has high

variance, but low bias. For classification, we take a majority vote among the 𝐵 predictions

 It scales well because the predictors can all be trained in parallel and the predictions can be

made in parallel, too

 Feature sampling is also possible, which is called random subspaces methods

 When combining both, it is called random patches

34

https://ieeexplore.ieee.org/document/709601
https://link.springer.com/chapter/10.1007/978-3-642-33460-3_28

Bagging the heart data

 The number of trees 𝐵 is not a

critical parameter with bagging;

using a very large value of 𝐵
will not lead to overfitting

 In practice, we use a value of 𝐵
sufficiently large that the error

has settled down

35

Details of previous figure

 Bagging and random forest results for the Heart data.

 The dashed line indicates the test error resulting from a single classification tree. The test

error (black and orange) is shown as a function of 𝐵, the number of bootstrapped training

sets used

 Random forests were applied with 𝑚 = 𝑝

 The green and blue traces show the OOB error, which in this case is considerably lower by

chance

36

Out-of-Bag Error Estimation

 It turns out that there is a very straightforward way to estimate the test error of

a bagged model

 Recall that the key to bagging is that trees are repeatedly fit to bootstrapped subsets of the

observations. One can show that, on average, each bagged tree makes use of around two-

thirds of the observations (Exercise 2 of Chapter 5)

 The remaining one-third of the observations not used to fit a given bagged tree are referred

to as out-of-bag (OOB) observations

 We can predict the response for the 𝑖th observation using each of the trees in which that

observation was OOB. This will yield around 𝐵/3 predictions for the 𝑖th observation,

which we average (or vote)

 This estimate is essentially the LOO cross-validation error for bagging, if 𝐵 is large (ESL,

exercise 15.2)

37

https://yuhangzhou88.github.io/ESL_Solution/

Ensemble method - Random Forests

 Random forests provide an improvement over bagged trees by way of a small

tweak that decorrelates the trees. This reduces the variance when we average

 As in bagging, we build a number of decision trees on bootstrapped training samples

 But when building these decision trees, each time a split in a tree is considered, a random

selection of 𝑚 predictors is chosen as split candidates from the full set of 𝑝 predictors

 The split is allowed to use only one of those 𝑚 predictors!

 A fresh selection of 𝑚 predictors is taken at each split, and typically we choose 𝑚 ≈ 𝑝 — that is,

the number of predictors considered at each split is approximately equal to the square root of the

total number of predictors (4 out of the 13 for the Heart data)

38

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html

Ensemble method - Random Forests

 Suppose that there is one very strong predictor in the data set. Then, in

the collection of bagged trees, most or all of the trees will use this strong

predictor in the top split

 Consequently, all of the bagged trees will look quite similar to each other

 Random forests overcome this problem by forcing each split to consider only a subset

of the predictors

 Using a small value of 𝑚 in building a random forest will typically be helpful when we

have a large number of strongly correlated predictors

 C.f. Extra tree

39

https://dafriedman97.github.io/mlbook/content/c6/s1/random_forests.html
https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees

Example: gene expression data

 We applied random forests to a high-dimensional biological data set consisting of

expression measurements of 4,718 genes measured on tissue samples from 349

patients

 There are around 20,000 genes in humans, and individual genes have different levels of activity, or

expression, in particular cells, tissues, and biological conditions

 Each of the patient samples has a qualitative label with 15 different levels: either normal or one of

14 different types of cancer

 Preprocessing

 We use random forests to predict cancer type based on the 500 genes that have the largest variance

in the training set

 We randomly divided the observations into a training and a test set, and applied random forests to

the training set for three different values of the number of splitting variables 𝑚

40

Results: gene expression data

 As with bagging, random forests will not overfit if we increase 𝐵, so in

practice we use a value of 𝐵 sufficiently large for the error rate to have

settled down

41

Details of previous figure

 Results from random forests for the fifteen-class gene expression data set with

𝑝 = 500 predictors

 The test error is displayed as a function of the number of trees. Each colored

line corresponds to a different value of 𝑚, the number of predictors available

for splitting at each interior tree node

 Random forests (𝑚 < 𝑝) lead to a slight improvement over bagging (𝑚 =
𝑝). Note that a single classification tree has an error rate of 45.7%

42

Ensemble method - Boosting

 Like bagging, boosting is a general approach that can be applied to many

statistical learning methods for regression or classification

 Recall that bagging involves creating multiple copies of the original training

data set using the bootstrap, fitting a separate decision tree to each copy, and

then combining all of the trees in order to create a single predictive model

 Notably, each tree is built on a bootstrap data set, independent of the other trees

 Boosting works in a similar way, except that the trees are grown sequentially:

each tree is grown using information from previously grown trees

 Boosting does not involve bootstrap sampling; instead, each tree is fit on a modified

version of the original data set

43

Ensemble method - AdaBoost

 One way for a new predictor to correct its predecessor is to pay a bit more

attention to the training instances that the predecessor underfitted

 This results in new predictors focusing more and more on the hard cases. This is the

technique used by AdaBoost

44

 The algorithm increases the relative

weight of misclassified training instances.

Then it trains a second classifier, using

the updated weights, and again makes

predictions on the training set, updates

the instance weights, and so on

𝛼𝑗 = η log
1 − 𝑒𝑗

𝑒𝑗
ො𝑦 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑘

𝑗=1, ො𝑦=𝑘

𝐵

𝛼𝑗

https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html#boosting

Gradient Boosting

 A very popular boosting algorithm is Gradient Boosting

45

 Gradient Boosting works by sequentially

adding predictors to an ensemble, each one

correcting its predecessor

 Instead of tweaking the instance weights at

every iteration like AdaBoost does, this method

tries to fit the new predictor to the residual

errors made by the previous predictor

https://sefiks.com/2018/10/04/a-step-by-step-gradient-boosting-decision-tree-example/

https://www.youtube.com/watch?v=3CC4N4z3GJc&t=0s
https://dafriedman97.github.io/mlbook/content/c6/s1/boosting.html
https://sefiks.com/2018/10/04/a-step-by-step-gradient-boosting-decision-tree-example/

Gradient Boosting algorithm for regression trees (GBDT/GBRT)

46

What is the idea behind this procedure?

 Unlike fitting a single large decision tree to the data, which amounts to fitting

the data and potentially overfitting, the boosting approach instead learns slowly

 Given the current model, we fit a decision tree to the residuals (gradient) from the model.

We then add this new decision tree into the fitted function in order to update the residuals

 Each of these trees can be rather small, with just a few terminal nodes, determined by the

parameter 𝑑 in the algorithm

 By fitting small trees to the residuals, we slowly improve መ𝑓 in areas where it does not

perform well. The shrinkage parameter 𝜆 slows the process down even further, allowing

more and different shaped trees to attack the residuals

47

Gradient Boosting

 Gradient Boosting has three tuning parameters

 The number of trees 𝐵 (Boosting can overfit therefore choose this by CV)

 The shrinkage parameter 𝜆 (Typical values are 0.01 or 0.001)

 The number 𝑑 of splits in each tree (Often 𝑑 = 1 works well, in which case each

tree is a stump, consisting of a single split which leads to an additive model) is the interaction

depth

 Gradient Boosting for classification is similar in spirit to boosting for

regression, but is a bit more complex (ESL ch10)

 The Python package XGboost (gradient boosted models) handles a variety of

regression and classification problems

48

https://xgboost.readthedocs.io/en/latest/

Gene expression data continued

49

Details of previous figure

 Results from performing boosting and random forests on the fifteen-class gene

expression data set in order to predict cancer versus normal (Binary

classification)

 The test error is displayed as a function of the number of trees. For the two boosted models,

𝜆 = 0.01. Depth-1 trees slightly outperform depth-2 trees, and both outperform the random

forest

 The test error rate for a single tree is 24%

 In boosting, because the growth of a particular tree takes into account the other

trees that have already been grown, smaller trees are typically sufficient. Using

smaller trees can aid in interpretability as well; for instance, using stumps leads to

an additive model (Exercise 2)

50

Variable importance measure

 For bagged/boosting regression trees,

we record the total amount that the

RSS is decreased due to splits over a

given predictor, averaged over all 𝐵
trees. A large value indicates an

important predictor

 Similarly, for bagged/boosting

classification trees, we add up the

total amount that the Gini index is

decreased by splits over a given

predictor, averaged over all 𝐵 trees

51

XGBoost

 XGBoost, short for Extreme Gradient Boosting, is a form of gradient boosting

included built-in regularization and impressive gains in speed

 The need for faster algorithms is evident when dealing with big data

 XGBoost or Gradient Boosting Decision Tree (GBDT)

 Don’t need to perform scaling (Only the relative size matters)

 When given a missing data point, XGBoost treats missing value as a feature and scores

different split options and chooses the one with the best results

52

https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

https://arxiv.org/pdf/1603.02754.pdf
https://stats.stackexchange.com/questions/353462/what-are-the-implications-of-scaling-the-features-to-xgboost
https://towardsdatascience.com/catboost-vs-light-gbm-vs-xgboost-5f93620723db

XGBoost

 Performance gain

 XGBoost adds built-in regularization to achieve accuracy gains beyond gradient boosting.

XGBoost is a regularized version of gradient boosting

 For more information about the objective function, please refer to here or here

 In addition to the regularization term, it used an approximation similar to Newton's Method

which is more accurate than naïve gradient boosting. An in-depth discussion can be found here

 Take a look at how to handle categorical variables and missing value

 Encode categorical variable before entering the algorithm

 Missing values can be automatically handled

53

https://xgboost.readthedocs.io/en/latest/tutorials/model.html#tree-boosting
https://www.youtube.com/watch?v=ZVFeW798-2I
https://stats.stackexchange.com/questions/202858/xgboost-loss-function-approximation-with-taylor-expansion
https://xgboost.readthedocs.io/en/stable/tutorials/categorical.html
https://xgboost.readthedocs.io/en/stable/faq.html#how-to-deal-with-missing-values

XGBoost

 XGBoot presents

 Parallel computing – Quantile sketch

 Approximate split-finding algorithm on weighted quantile

54

https://www.youtube.com/watch?v=oRrKeUCEbq8

https://www.youtube.com/watch?v=oRrKeUCEbq8
https://datasketches.apache.org/docs/Quantiles/QuantilesOverview.html
https://www.youtube.com/watch?v=oRrKeUCEbq8

XGBoost

 XGBoot presents

 Can handle sparse matrix (Sparsity-aware split finding)

 Cache-aware access – improve cache performance (Puts gradient and hessian in it)

 Block compression – compress data which is stored in hard disk and parallel reading

 Random sampling on samples or features

55

https://www.youtube.com/watch?v=oRrKeUCEbq8
https://gist.github.com/jboner/2841832

LightGBM

 For speed, use Histogram-based Gradient Boosting (HGB) and Exclusive

Feature Bundling

 It works by binning the input features, replacing them with integers. The number of bins is

controlled defaults to 255 and cannot be set any higher than this. The way the bins are built

(𝑂(𝑛)) removes the need for sorting (O(𝑛𝑙𝑜𝑔 𝑛)) the features when training each tree

 The complexity of split a single node reduce from 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛𝑙𝑜𝑔(𝑛)) to 𝑂(𝑛𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 × 𝑛)

 Binning can enormously reduce the number of possible thresholds that the training

algorithm needs to evaluate. Moreover, working with integers makes it possible to use

faster and more memory-efficient data structures

56

 Exclusive Feature Bundling algorithm, which

can reduce the number of features by

regrouping mutually exclusive features into a

bundle (c.f. One hot vs label encoding)

https://lightgbm.readthedocs.io/en/latest/Features.html
https://hackmd.io/@WangJengYun/HyLtemyxI
https://stackoverflow.com/questions/45513511/decision-trees-choosing-thresholds-to-split-objects

LightGBM

 Optimization in accuracy

 Gradient-based One-Side Sampling (GOSS), which adjust the sampling strategy

 Keeps all data instances with large gradients and performs random sampling for data instances

with small gradients. Data points with larger gradients have higher errors and would be important

for finding the optimal split point

 Leaf-wise (Best-first) tree growth instead of fixed ordered, see discussion here

 Optimal Split for Categorical Features

 Use a strategy similar to target encoding

57 https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-

algorithm-should-i-use-e7fda7bb36bc

https://datascience.stackexchange.com/questions/26699/decision-trees-leaf-wise-best-first-and-level-wise-tree-traverse
https://www.tandfonline.com/doi/abs/10.1080/01621459.1958.10501479
https://medium.com/riskified-technology/xgboost-lightgbm-or-catboost-which-boosting-algorithm-should-i-use-e7fda7bb36bc

CatBoost

 Symmetric trees

 CatBoost builds symmetric (balanced) trees, unlike XGBoost and LightGBM. In every step,

leaves from the previous tree are split using the same condition. The feature-split pair that

accounts for the lowest loss is selected and used for all the level’s nodes

 This balanced tree architecture aids in efficient CPU implementation, decreases prediction time

and controls overfitting as the structure serves as regularization

58

 Ordered boosting

 When calculating the gradient estimate of a data instance, classic algorithms use the same

data that the model was built with

 CatBoost, on the other hand, uses the concept of ordered boosting to train the model on a

subset of data while calculating residuals on another subset, thus preventing overfitting

https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf

CatBoost

 Sampling techniques

 MVS can be considered a variant of the GOSS, and provide a lower variance for estimating

the gradient

 CatBoost adds native supports for all kinds of features, be it numeric,

categorical, or text and saves time and effort in preprocessing

 Take a look at how to deal with categorical features here

 Visualization tools provided

59

https://catboost.ai/en/docs/concepts/algorithm-main-stages_bootstrap-options#mvs
https://neptune.ai/blog/when-to-choose-catboost-over-xgboost-or-lightgbm
https://github.com/catboost/tutorials/blob/master/categorical_features/categorical_features_parameters.ipynb

Hyperparameters

1. For faster speed

 Setting bagging fraction ratio to randomly choose instances

 Use feature sub-sampling (random subspace) by setting the fraction of features

 Use a smaller number of bins for Histogram-based Gradient Boosting

2. For better accuracy

 Use a smaller learning rate with a larger number of iterations (number of estimators)

 Use a larger number of bins for Histogram-based Gradient Boosting

 Try different categorical encoding methods

3. Prevent overfitting

 Use a larger value of the number of data in leaf to avoid splitting

 Use a smaller number of depth to avoid growing deeper tree

 Try to adjust regularization strength in the objective function

 Use DART (Like dropout in neural network)
60

https://xgboost.readthedocs.io/en/stable/tutorials/dart.html

Hyperparameters

XGBoost LightGBM CatBoost

Speed subsample

colsample_bytree

n_estimator

bagging_fraction

feature_fraction

num_iterations

subsample

rsm

iterations

Control overfitting/accuracy learning_rate (0.01~0.2)

max_depth

min_child_weight

learning_rate

max_depth, num_leaves

min_data_in_leaf

learning_rate

depth

l2-leaf-reg

Categorical variable Experimental categorical_feature cat_features

one_hot_max_szie

61

Conclusion

 In conclusion, ensemble learning is versatile, powerful, and fairly simple to use

 Ensemble can help push your system’s performance to its limits

 Random Forests and GBDT are among the first models you should test on most Machine

Learning tasks, and they particularly shine with heterogeneous tabular data. Moreover, as

they require very little preprocessing, they’re great to get a prototype up and running

quickly

 About the choice of the framework

 XGBoost has the largest community and provides sufficient support for production

 LightGBM may be a better choice when considering the speed and accuracy

 CatBoost is a choice when the dataset is small or when the categorical variables are

important in the model

62

https://arxiv.org/pdf/2207.08815.pdf

Appendix

The tree training algorithm

 ID3 (Iterative Dichotomiser 3) was developed in 1986 by Ross Quinlan. The

algorithm creates a multiway tree, finding for each node (i.e. in a greedy

manner) the categorical feature that will yield the largest information gain for

categorical targets. Trees are grown to their maximum size and then a pruning

step is usually applied to improve the ability of the tree to generalise to unseen

data

 C4.5 is the successor to ID3 and removed the restriction that features must be

categorical by dynamically defining a discrete attribute (based on numerical

variables) that partitions the continuous attribute value into a discrete set of

intervals. C4.5 converts the trained trees (i.e. the output of the ID3 algorithm)

into sets of if-then rules. These accuracy of each rule is then evaluated to

determine the order in which they should be applied. Pruning is done by

removing a rule’s precondition if the accuracy of the rule improves without it
64

https://scikit-learn.org/stable/modules/tree.html#tree-algorithms-id3-c4-5-c5-0-and-cart
https://en.wikipedia.org/wiki/ID3_algorithm

The tree training algorithm

 C5.0 is Quinlan’s latest version release under a proprietary license. It uses less

memory and builds smaller rulesets than C4.5 while being more accurate

 CART (Classification and Regression Trees) is very similar to C4.5, but it

differs in that it supports numerical target variables (regression) and does not

compute rule sets. CART constructs binary trees using the feature and

threshold that yield the largest information gain at each node

 scikit-learn uses an optimised version of the CART algorithm; however, scikit-

learn implementation does not support categorical variables for now

 Scikit-learn’s default max _𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠

65

https://en.wikipedia.org/wiki/Predictive_analytics#Classification_and_regression_trees_.28CART.29

Other ensemble methods - Stacking

 Stacking is based on a simple idea: instead of using trivial functions (such as

hard/soft voting) to aggregate the predictions of all predictors in an ensemble,

why don’t we train a model to perform this aggregation?

66

 To train the blender (aggregator), you first need

to build the blending training set

 You can use cross-validation on every estimator

in the ensemble to get out-of-sample

predictions for each instance in the original

training set

 These can be used as the input features to train

the blender, and the targets can be simply be

copied from the original training set

Other ensemble methods

 Extra-trees

 In extremely randomized trees, randomness goes one step further in the way splits are

computed

 As in random forests, a random subset of candidate features is used, but instead of looking

for the most discriminative thresholds, thresholds are drawn at random for each candidate

feature and the best of these randomly-generated thresholds is picked as the splitting rule

 This usually allows to reduce the variance of the model a bit more, at the expense of a

slightly greater increase in bias

67

https://scikit-learn.org/stable/modules/ensemble.html#extremely-randomized-trees

Other ensemble methods - AdaBoost

 The following shows the decision boundaries of five consecutive predictors on

the moons dataset

 The first classifier gets many instances wrong, so their weights get boosted. The second

classifier therefore does a better job on these instances, and so on

68

 The plot on the right represents the

same sequence of predictors, except

that the learning rate is halved

 As you can see, this sequential learning

technique has some similarities with

Gradient Descent, except that instead

of tweaking a single predictor’s

parameters to minimize a cost function,

AdaBoost adds predictors to the

ensemble, gradually making it better

ESL 10.9 – Boosting Trees

69

Encoding categorical variable – One hot encoding

 Categorical data can be extremely useful. However, in its original form, it is

unrecognizable to most models. We can use different “encoding” techniques

 One hot encoding convert it to dummy variables by produces one feature per category

 In linear and logistic regression, one hot encoding causes problems with multicollinearity. In such

cases, one dummy is omitted (its value can be inferred from the other values)

 The number of categorical features should be small so that it can be effectively applied

70

Animal Target isCat isDog isHamster

Cat 1 1 0 0

Hamster 0 0 0 1

Cat 0 1 0 0

Dog 1 0 1 0

Hamster 0 0 0 1

Cat 1 1 0 0

Dog 0 0 1 0

Encoding categorical variable – Label encoding

 Ordinal encoding or label encoding will transform each categorical feature to

one new feature of integers (0 to number of features-1)

 This coding suggests an ordering. Furthermore, it implies that the difference between cat

and dog is the same as between dog and hamster

71

Animal Target Animal_encoded

Cat 1 0

Hamster 0 2

Cat 0 0

Dog 1 1

Hamster 0 2

Cat 1 0

Dog 0 1

Encoding categorical variable – Target encoding

 Target encoding or mean encoding will replace a feature's categories with some

number derived from the target

 Group the data by each category and count the number of occurrences of each target.

Calculate the average of the target given each specific category and add it to a new column

 A target encoding derives numbers for the categories using the feature's most important

property: its relationship with the target

72

Animal Target Animal_encoded

Cat 1 0.67

Hamster 0 0.50

Cat 0 0.67

Dog 0 0.00

Hamster 1 0.50

Cat 1 0.67

Dog 0 0.00

Encoding categorical variable – Target encoding

 When a category only occurs a few times in the dataset, any statistics

calculated on its group are unlikely to be very accurate and may leak the target

 To avoid target leak and overfitting, target encoding need to be trained on an independent

"encoding" split. You can use cross-validation in practice

73 https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

https://axk51013.medium.com/kaggle-categorical-encoding-3%E5%A4%A7%E7%B5%95%E6%8B%9B-589780119470
https://medium.com/@pouryaayria/k-fold-target-encoding-dfe9a594874b

Ensemble method - Bayesian Additive Regression Trees (BART)

 BART is related to the bagging and boosting approaches: each tree is

constructed in a random manner as in bagging and random forests, and each

tree tries to capture signal not yet accounted for by the current model, as in

boosting

 The main novelty in BART is the way in which new trees are generated

 Let 𝐾 denote the number of regression trees, and 𝐵 the number of iterations for which the

BART algorithm will be run. The notation መ𝑓𝑘
𝑏(𝑥) represents the prediction at 𝑥 for the 𝑘th

regression tree used in the 𝑏th iteration

 At the end of each iteration, the 𝐾 trees from that iteration will be summed መ𝑓𝑏(𝑥) =
σ𝑘=1
𝐾 መ𝑓𝑘

𝑏(𝑥) for 𝑏 = 1,… , 𝐵

74

Bayesian Additive Regression Trees (BART)

 There are two components to this

perturbation:

1. We may change the structure of

the tree by adding or pruning

branches

2. We may change the prediction in

each terminal node of the tree

 Algorithm 8.3 can be viewed as a

Markov chain Monte Carlo for

fitting the BART model

75

http://hedibert.org/wp-content/uploads/2018/06/BART.pdf

76

Bayesian Additive Regression Trees (BART)

 We typically throw away the first few of these prediction models, since models

obtained in the earlier iterations tend not to provide very good results

 We can let 𝐿 denote the number of burn-in iterations; for instance, we might take 𝐿 = 200.

Then, to obtain a single prediction, we simply take the average after the burn-in iterations,

መ𝑓 𝑥 =
1

𝐵−𝐿
σ𝑏=𝐿+1
𝐵 መ𝑓𝑏 𝑥

 A key element is that in Step 3(a)ii., we do not fit a fresh tree to the current

partial residual: instead, we try to improve the fit to the current partial residual

by slightly modifying the tree obtained in the previous iteration

 This guards against overfitting since it limits how “hard” we fit the data in each

iteration. Furthermore, the individual trees are typically quite small. We limit

the tree size in order to avoid overfitting the data, which would be more likely

to occur if we grew very large trees

77

78

Tuning parameters for BART

 When we apply BART, we must select the number of trees 𝐾, the number

of iterations 𝐵, and the number of burn-in iterations 𝐿. We typically

choose large values for 𝐵 and 𝐾, and a moderate value for 𝐿
 For instance, 𝐾 = 200, 𝐵 = 1,000, and 𝐿 = 100 is a reasonable choice. BART has

been shown to have very impressive out-of-box performance — that is, it performs

well with minimal tuning

79

Reference

 ESL Chapter 8,9,10,15,16

 https://github.com/serengil/chefboost

80

https://github.com/serengil/chefboost

